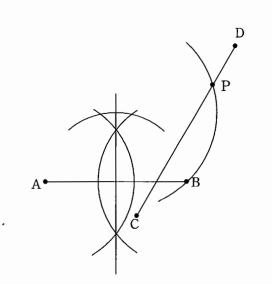
正 答 表

上		
	1	点
〔問 1〕	16	6
〔問 2〕	$x = \frac{5}{11}$, $y = \frac{9}{11}$.6
〔問 3〕	$\frac{1}{4}$	6
〔問 4〕		7



	2	点
〔問 1〕	<u>17</u> 8	7
〔問 2〕	【 途中の式や計算など 】	11

学

点 A の座標は (2, 4a)である。 3AC=BC, AC=4a より, BC=12a となる。 また, 点 C の x 座標が 2 であるから, OB=12a-2 となる。 よって,

$$\triangle OAB = \frac{1}{2} \times 4a \times (12a - 2)$$
$$= 24a^2 - 4a$$

一方で、 $\triangle OAB$ の面積が 28 cm^2 であるから、 $24a^2-4a=28$

整理して、

 $6a^2 - a - 7 = 0$

これを解いて,

$$a = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 6 \times (-7)}}{2 \times 6}$$
$$= \frac{1 \pm \sqrt{169}}{12} = \frac{1 \pm 13}{12} = \frac{7}{6}, -1$$
$$a > 0 \quad \text{if } 0, a = \frac{7}{6}$$

よって, 点 A の座標は $\left(2, \frac{14}{3}\right)$

点 B の座標は(-12, 0) となる。 直線 m はこの 2 点を通るから,

$$\frac{14}{3} = 2b + c , \quad 0 = -12b + c$$

これを解いて,

$$b = \frac{1}{3}, c = 4$$

したがって,

$$a = \frac{7}{6}$$
, $b = \frac{1}{3}$, $c = 4$

(答文)
$$a = \frac{7}{6}, b = \frac{1}{3}, c = 4$$

[問 3] S:T = 24:1	7	7	100000000000000000000000000000000000000
------------------	---	---	---

	3	点
〔問 1〕	$\frac{3}{2}$ cm	7
〔問 2〕	(1) 【 証 明	11

 $\triangle ADH$ と $\triangle AFD$ において,

共通な角により,

 $\angle DAH = \angle FAD \cdots 1$

 $\angle BAD = \angle CAD = a$, $\angle CAF = \angle EAF = b$ とおくと、

AB // HD より,平行線の錯角は等しいから,

 $\angle ADH = \angle BAD = a \cdots 3$

 $\angle ACF = 90^{\circ}$ だから、

 $\angle AFD = 90^{\circ} - \angle CAF$

 $= 90^{\circ} - b = a \ (2) (2) (3) \cdots (4)$

よって, ③, ④より, ∠ADH=∠AFD ······⑤ したがって, ①, ⑤より,

2組の角がそれぞれ等しいから,

 $\triangle ADH \Leftrightarrow \triangle AFD$

〔問 2〕 (2)

	4	,
〔問 1〕	$36\sqrt{2}$ cm ³	
〔問 2〕	AP: BP= $1:\sqrt{3}$	•
〔問 3〕	【 途中の式や計算など 】	1

線分 BS の長さは x cmであるから、線分 AS の長さは (6-x) cm、線分 DT の長さは (6-2x) cm となる。 よって、四角形 ASTD の面積は、

$$\{(6-2x)+(6-x)\}\times 6\times \frac{1}{2} = (12-3x)\times 6\times \frac{1}{2}$$

=36-9x (cm²) となる。

また、四角形 ABCD の対角線 AC の長さは、

$$6 \times \sqrt{2} = 6\sqrt{2}$$
 (cm) となる。

また, このとき線分AUの長さは √2 x cmである。 △AOC は 3 辺の長さの比から ∠AOC = 90°の 直角二等辺三角形であるから, ∠OAC = 45°となる。 点 U から辺 AC に下ろした垂線と線分 AC との交点を K とすると, △AUK も直角二等辺三角形となり, △AUK の 3 辺の長さの比より, 線分 UK の長さは,

$$\sqrt{2}x \times \frac{1}{\sqrt{2}} = x$$
 (cm) となる。

以上のことから、立体 U-ASTD の体積と立体 E-ASTD の体積は、それぞれ

$$(36-9x) \times x \times \frac{1}{3} = 3x(4-x)$$
 (cm³)

$$(36-9x) \times 6 \times \frac{1}{3} = 18(4-x)$$
 (cm³)

この体積の和が立体 ABCD-EFGH の体積の $\frac{2}{9}$ 倍となるから、

$$3x(4-x)+18(4-x)=6^3\times\frac{2}{9}$$

これを解くと、(x-2)(x+4)=0 となるから、x=2,-4 となる。

ここで、 $-0 \le x \le 6$ であるから、問題に適するのは、x=2 のみ。 0 < x < 3

(答え)

2

小計 1	小計 2	小計 3	小計 4
25	25	25	25

 $3\sqrt{5}$

 cm^2

合	計	得	点
	1(00	